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Twist localizes three-dimensional patterns

A. G. Rossberg*
Department of Physics, Kyoto University, 606-8502 Kyoto, Japan

~Received 9 April 2000!

A mechanism for the localization of spatially periodic, self-organized patterns in anisotropic media which
requires systems extended in all three spatial dimensions is presented: When the anisotropy axis is twisted, the
pattern becomes localized in planes parallel to the anisotropy axis. An analytical description of the effect is
developed, and used to interpret recent experiments in the high-frequency regime of electroconvection by
Bohatsch and Stannarius@Phys. Rev. E60, 5591~1999!#. The localization width is found to be of the order of
magnitude of the geometrical average of the pattern wavelength and the inverse twist.

PACS number~s!: 45.70.Qj, 47.54.1r, 83.70.Jr, 44.27.1g
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I. INTRODUCTION

Three-dimensional pattern formation in dissipative s
tems has been theoretically investigated to some exten
the case of the complex Ginzburg-Landau equation@1–6#—
but there seems to be no experimental model for which
theory is quantitatively valid. Qualitatively, many resu
should also apply to a similar case, pattern formation
three-dimensional~3D! excitable media, for which controlled
experimental realizations exist~see, e.g., Refs.@7–9#!, al-
though the containers are typically rather small. In both s
tems it seems reasonable to concentrate on the structure
dynamics of filaments formed by the cores of scroll wav
which largely control the dynamics in the remaining spa
In a recent theoretical work, for example, the filament d
namics was investigated for an anisotropic excitable med
with a twisted anisotropy axis@10#, a situation found in the
human heart muscle. It was predicted that the filament ty
cally drifts such as to align with the anisotropy axis.

Both the complex Ginzburg-Landau equation and ex
able media exhibit traveling waves. For systems formingsta-
tionarily bifurcating spatially periodic structures, the dom
nance of the filaments formed by topological defects is
so strong, and different effects can be expected. A protot
for such a system might be the high-frequency regime
electroconvection~EC! in nematic liquid crystals. Convec
tion patterns with a wavelengthl which is small compared
to the spatial extensions of the sample are easily obtai
and sustained over long times by applying a sufficiently h
ac voltage~with a modulation frequency higher than th
‘‘cutoff frequency’’ approximately equal to the invers
charge relaxation time! at plane, parallel~and transparent!
electrodes enclosing the liquid crystal. However, there is
some discussion about whether the patterns are really t
dimensional, i.e., arising from a bulk instability and formin
a laminar structure, or rather parallel rolls located at the e
trodes.

Closely related to this geometrical question is the ques
about the mechanism of convection. The most popular ex
nation, here called the standard model~SM!, is by the dielec-
tric regime of EC via the Carr-Helfrich mechanism~for de-
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tails, see the references below!, which is based on the Leslie
Ericksen formulation of nematodynamics. The SM predi
bulk convection. It has, on the linear level, been worked
by Dubois-Violetteet al. @11#. Later it was modified for
square-wave driving voltages@12#, and to include flexoelec-
tric effects @13–15# and the effects of finite cell thicknes
@16#. Recently it was extended to the nonlinear level@17#.
But attempts to bring the predictions of the SM~threshold
voltage and critical wave number! into quantitative agree-
ment with experiments were only partly successful.

The main challenge to the SM is the ‘‘isotropic’’ mech
nism for EC@18,19#, for which the anisotropy of the nemati
is only of secondary relevance. There, EC is driven by
verted charge gradients in thin Debye layers near the e
trodes, which are not included in the SM. The isotrop
mechanism naturally leads to boundary convection. Si
several material parameters relevant to the isotropic me
nism are unknown, only semiquantitative predictions of t
effect can be made.

In principle, both mechanisms are active, but it is reas
able to assume that one of them dominates. In a recent e
to settle the controversy on bulk vs boundary instability, B
hatsch and Stannarius@20# developed an experiment with
modified design, which was intended to map the struct
across the cell onto the 2D shadowgraph image~or the dif-
fraction pattern! of light passing through the cell.

The technique of Bohatsch and Stannarius was to
samples with atwistedgeometry: just as in twisted nemat
LCD displays, the anchoring of the nematic directorn̂ (n̂2

51) at the upper and lower electrodes~separationd) is such
that n̂ is parallel to the layer, but the alignment axis of th
director at the upper boundary is perpendicular to that at
lower boundary. In the equilibrium configuration the direct
is planarly oriented, and interpolates between the bounda
with a uniform twist n̂3rot n̂. Configurations with positive
or negative twists are thinkable. They are related to e
other by a reflection. Without loss of generality, a negat
twist (2p/2d) shall be assumed. Although inversion sym
metry is broken in the twisted geometry, there is still t
symmetry with respect to a 180° rotation of the cell arou
the axis of the director at midplane. The critical mode at
onset of EC, which breaks the approximate translation sy
metry, can be symmetric with respect to this rotation~per-
4682 ©2000 The American Physical Society
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PRE 62 4683TWIST LOCALIZES THREE-DIMENSIONAL PATTERNS
haps followed by a translation by half a wavelength!, leading
to normal rolls, or also break this discrete symmetry, th
leading tooblique rolls.

In experiments with untwisted cells, the rolls~or laminae!
observed at the threshold of structure formation in the hi
frequency regime are always normal.1,2 Thus Bohatsch and
Stannarius concluded by an intuitive argument, that,
twisted cells, the observation of normal rolls at thresh
demonstrates a bulk instability, while the observation of o
lique rolls is an indicator of a boundary instability, in pa
ticular when the rolls are approximately normal to the alig
ment ofn̂ at the boundaries. They observed a transition fr
normal to oblique rolls as the ac frequency increases.

Assuming that the SM is basically correct, Secs. II and
of this paper develop the linear theory for the convect
pattern in twisted cells, predicting critical modes localized
planes far from or near to the electrodes, respectively,
pending on the boundary conditions. Section IV sketches
nonlinear effects relevant at the threshold of convection,
Sec. V concludes with an interpretation of the experiment
light of the theory.

II. LOCALIZED BULK MODES IN
THE STANDARD MODEL

Below, the linear theory of high-frequency EC in twiste
cells is developed within the framework of the SM. The a
sociation of the obliqueness angle with the position of
convective mode turns out to be correct. But it is also fou
that the experimental results for twisted cells cannot be tra
fered to the untwisted cell, as suggested by Bohatsch
Stannarius, because the localization of the linear mode,
the boundaries or in the bulk, is enforced by the twist its

The calculations are based on the general weakly non
ear theory@17# of dielectric EC in large containers, whic
has to take the interaction of the convection pattern w
several homogeneous soft modes~hydrodynamic modes! ex-
plicitly into account. One of these modes is the director o
entation. As follows from the general calculation, at lowe
order, a twist does not excite the other soft modes of
liquid crystal, such as electric potentials or fluid motio
even when the electric ac voltage is applied. The direct
fluence of the twist on the convection pattern reduces t
purely geometric effect~no additional coupling constants no
relevant for the untwisted cell are involved!. The local am-
plitude and phase of the convection pattern is expressed
complex fieldA5A(x,y,z,t), such that the modulation o
actual physical quantitiesu is given by u(x,y,z,t)
5u0A(x,y,z,t)exp(iqcx)1c.c.1~higher order corrections!,
where qc is the wave number of the convection pattern
threshold in the untwisted cell, andu0 is a complex constant
The linear dynamics ofA in the presence of a pure, not to
strong twist of the nematic director is described@17# by

t] tA5@«1jx
2]x

21jy
2~]y2 iqcw!21jz

2]z
2#A. ~1!

1When chevron patterns are observed, one is not at the thres
of structure formation.

2In the low-frequency regime of EC they can be normal or o
lique, however.
-

n
d
-

-

I
n

e-
e
d

in

-
e
d
s-
nd
ar
.
n-

h

-
t
e
,
-
a

a

t

Here thez axis is perpendicular to the electrodes. To
specific, assume thatẑ points ‘‘up’’ and 2 ẑ points ‘‘down.’’
For now, the orientation ofx andy axes relative to the direc
tor anchoring shall be left unspecified. This is possible
cause of the rotational symmetry underlying Eq.~1! @21#.
The angle betweenn̂ and thex-z plane is denoted byw. The
quantitative validity of Eq.~1! requires thatw be small, and
that modulations ofA andw in space and time are slow. I
particular Eq.~1! is never valid across the whole cell, sincew
varies over an angleO(1), a problem that will be discusse
below. The~positive! coherence lengthsjx , jy , andjz are
typically of the orderO(qc

21), andt is of the order of the
charge relaxation time. The strength of the external stres
expressed by the reduced control parameter«ªE2/Ec

221 in
terms of the strength of the external electric ac fieldE
5V/d and the threshold field for electroconvectionEc for
the thick (d→`), untwistedcell. u«u is assumed to be smal
~Observe that this definition of« differs from the one used in
Ref. @20#, which is based on the threshold in thetwistedcell
with finite d, a quantity to be calculated below.! Analytic
approximations for all quantities involved in description~1!
can be found in Ref.@17#.

The boundary condition corresponding to Eq.~1! is

A~x,y,z,y,t !50 at the horizontal boundaries. ~2!

From the translation invariance in thex-y plane, it follows
that the critical mode is of the formA5a(z)exp(iQx1iPy)
with real Q and P, i.e., with a pattern wave vectorqW 5(qc
1Q,P). We will choosethe orientation of thex axis to be
parallel toqW , in other wordsP50. It is easily seen by sepa
ration of variables that according to Eq.~1! the critical mode,
i.e., the first mode to become unstable as« increases, has
Q50. It follows that the twist has no influence on the wav
length of the critical mode.

This result is in agreement with the measurements of
hatsch and Stannarius for cells of intermediate thickness.
in their thinnest and thickest cells they found shorter wa
lengths. While the deviation in the thin cell can be und
stood as a breakdown of the 3D amplitude formalism due
large spatial gradients ofA andw, the reason for the devia
tion in the thick cell is not clear. In agreement with theore
ical expectations the wavelength decreases with increa
frequency. The observed deviation from the approximatel
;v21/2 law at the highest frequencies indicates that
wavelength has reached the Debye length and charge d
sion effects need to be taken into account in the theoret
description, an effect noticed already by Dubois-Viole
et al. @11# ~and typically to be expected at the;102-fold
cutoff frequency@17#!.

Choose the origin of thez axis such thatw50 at z50.
Denote byz0 the distance of the lower boundary fromz
50 ~i.e., the lower boundary is atz52z0). By the preced-
ing construction, the amplitude of the critical mode is a fun
tion of z alone and satisfies

05@«2jy
2qc

2w21jz
2]z

2#A, ~3!

old
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4684 PRE 62A. G. ROSSBERG
with w5pz/2d. The equation has the form of the time
independent Schro¨dinger equation for the quantum harmon
oscillator.

Ignore, for a moment, the horizontal boundaries, and
pose instead the boundary condition

A is bounded as uzu→`. ~4!

Then the lowest eigenvalue of Eq.~3! is

«5«cª
pqcjyjz

2d
, ~5!

with a critical mode

A5expS 2
z2

2w2D , ~6!

with a width

w5S 2djz

pqcjy
D 1/2

. ~7!

Equations~5! and ~6! correspond to the ground state of th
harmonic oscillator.

Now assumedqc@1, which is required for the validity of
Eq. ~1!. Then «c5O(dqc)

21!1 and, within the rangeuzu
5O(w) covered by the critical mode,w5O(w/d)
5O(dqc)

21/2!1. Thus, foruzu5O(w), solutions~5! and~6!
comprise a physically valid solution of Eq.~1!. For uzu@w
the critical mode is to high accuracy zero, and thus a solu
of the linear problem—also beyond the range of validity
Eq. ~1!. Of course any homogeneous boundary condition
particular Eq.~2!, is satisfied, provided the boundaries a
sufficiently far away. Equations~5! and ~6! therefore give a
physically valid threshold and critical mode.

Next, consider the situation that one of two boundari
e.g., the lower one, is nearz50 @i.e., z05O(w)#, the other
boundary far away. Then the lower boundary condition
comes

A50 at z52z0 ~8!

while the upper boundary condition effectively remains

A is bounded as z→`. ~9!

This eigenvalue problem has to be solved numerically~after
rescaling, it depends only on the parameters«/«c andz0 /w);
here a shooting method is used. The lowest eigenvalue«(z0)
as a function ofz0 is shown in Fig. 2~b! ~lower curve!. As z0
decreases to zero and the maximum of the critical mode
proaches the boundary, the Gaussian shape ofA(z) is de-
formed, and the threshold«(z0) increases monotonically. In
particular, one finds«(0)53«c , the eigenvalue of the firs
excitation and lowest antisymmetric mode of the ‘‘harmon
oscillator,’’ with the corresponding eigenmode. Excitatio
near the boundaries have higher thresholds than in the
and are inhibited.

Thus the theory predicts that in thick enough cells
critical mode is localized within a horizontal layer whic
covers only a small fractionO(w/d)5O(qcd)21/2 of the
-

n
f
n

,

-

p-
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e

cell. The orientation of the critical wave vectorqW and the
position of the maximum of the critical mode within th

sample are coupled, such thatqW is parallel ton̂ at the maxi-

mum of A(z). The orientation of the critical wave vectorqW

lies between the two orientations of director anchoring at

boundaries. Small angles of orderO(w/d) betweenqW and
director anchoring are forbidden, but otherwise the orien

tion of qW with respect to the symmetry axis, i.e., the obliqu
ness angle, is undetermined. One is thus dealing wit
highly degenerate problemwith critical wave vectors lying
on a circular arc, similar to pattern formation in isotrop
systems, where the critical wave vectors lie on a circle.

In thin cells, where w/d,dqc5O(1), the three-
dimensional amplitude equation~1! is not an accurate de
scription anymore. But when solved numerically wi
boundary condition~2! as a qualitative model, it predict
normal rolls in agreement with experiments.

The theoretical analysis for thick cells seems to cor
spond well with the observations of Bohatsch and Stanna
in the ‘‘broad’’ intermediate frequency range~within the
high-frequency regime!, where, near onset, the distributio
of the wave-vector orientations is ‘‘broad, smeared out, a
fluctuating’’ @20#. Unfortunately, no experimental raw da
for this range have yet been published, which makes it h
to judge how well defined the maxima of these distributio
are, which theydo nevertheless find at small but finite ob
liqueness angles ('10 °), and which are difficult to under
stand from the theory presented here.

III. BOUNDARY MODES WITH
MODIFIED BOUNDARY CONDITIONS

The experimental observation that, for frequencies ab
the intermediate ‘‘transition range,’’ the distribution of th
wave vectors near onset becomes narrower with maxim
obliqueness angles near645°, i.e., parallel to the surfac
anchoring, seems to be in contradiction with the theory ba
on the SM. A simple explanation for this, which should
examined experimentally before coming to a final conc
sion, would be the combination of two effects. The first e
fect is that, at higher frequencies, where the pattern wa
lengths are shorter and wave-optical effects have to be ta
into account, the optical contrast of the shadowgraph met
and the intensity of the reflexes in the optical far field b
come weaker. As a result, the apparent optical threshold
convection could lie slightly above the actual thresho
Wave-optical effects become important at a pattern wa
lengthl of the order of magnitude of the geometrical ave
age of the optical wavelength and the thickness of the c
vective layerO(w)5O(ld)1/2 @22#, a condition satisfied in
the present case. The second effect is that the value of
reduced control parameter corresponding to the onset of n
trivial, nonlinear behavior involving homogeneous so
modes scales like (l/d)2 or even (l/d)4 @17#, and thus de-
creases with increasing frequency. In combination of th
two trends, the observed large obliqueness angles
threshold in thick cells at high frequencies might, in fa
correspond to already fully developed nonlinear effects, s
as the chevron pattern. In particular the obliqueness an
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PRE 62 4685TWIST LOCALIZES THREE-DIMENSIONAL PATTERNS
above 45°~Ref. @20#, Fig. 11, 3500 Hz! would then be easie
to understand.

But one could also try to explain the observation of p
ferred obliqueness angles near645° as a result of some
mechanism of wave-vector selection that removes the de
eracy of the problem. Mostly linear selection mechanis
via perturbations from the boundaries shall be conside
here. Nonlinear mechanisms will shortly be discussed in S
IV.

If there is a linear selection mechanism for large obliqu
ness angles at threshold, at least one of the three condi
~3!, ~8!, and~9! must be invalid. The reason for this may b
found in the truncation errors of the asymptotic expans
which leads to Eqs.~3!, ~8!, and ~9!, the excluded effect of
noise, or an insufficient description on the hydrodynam
level. All possible truncation errors become, in one way
another, large only forz05O(d). This will be demonstrated
for one case below. If noise is the main cause for selectinz0
~which is presumably the case at intermediate frequencie!, it
is reasonable to assumez0 to be randomly distributed ove
@0,d#, leading again toz05O(d) on average. Thus it can b
concluded that, in fact, the description on the hydrodyna
level, in particular near the boundaries, is insufficient.

For the eigenvalue problem considered above, bound
condition~8! turns out to be a somewhat singular case of
more general condition

A5m]zA at z52z0 , ~10!

with a real parameterm. To discuss the implications o
m5” 0 as one possible truncation error or as a possible
come of an extended hydrodynamic description, the eig
value problem~3! with boundary conditions~9! and ~10!
shall now be investigated. This will also yield an analy
argument, robust with respect to perturbations, that supp
the numerical observation that form50 the function«(z0) is
monotonously decaying withz0.

Up to normalization, there is, for fixed«, a single non-
trivial solution A(z)5 f («,z) of Eq. ~3! satisfying the upper
boundary condition~9!. The lower boundary condition~10!
determines a discrete set ofz0 for given « or, respectively,
«5«(z0) is determined implicitly by the lower boundar
condition as a multivalued function ofz0, i.e., by

f „«~z0!,2z0…5m f 8„«~z0!,2z0…, ~11!

where the prime onf denotes a differentiation with respect
the second argument.

At a local minimum of«(z0) one has]z0
«(z0)50, and

differentiation of Eq.~11! with respect toz0 yields

f 8„«~z0!,2z0…5m f 9„«~z0!,2z0…. ~12!

By combining Eqs.~11! and ~12! and the defining equation
of f @Eq. ~3!#, one arrives at

jz
2f 5m2Fp2jy

2qc
2z0

2

4d2
2«G f . ~13!
-
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For nonzerom the common factorf can be canceled sinc
f 5” 0 by Eq.~11!. A simple algebraic relation between« and
z0 ~which determines the wave vector! for the critical mode
is thus obtained.

As m→0, two cases can be distinguished. In the first c
z0 remains bounded. Then Eq.~13! reduces asymptotically to

«;2jz
2/m2. ~14!

Corresponding solutions exist only form,0. They can be
approximated byf («,z)'exp(z/m), and are strongly local-
ized near the lower boundary. But due to the large value
u«u ~as m→0), these solutions can not be expected to
always physically meaningful. In the second casez0 in-
creases over all bounds. Then small deviations from eig
value~5! and solution~6! are sufficient to satisfy the bound
ary conditions. Thus« remains bounded, and Eq.~13!
reduces asymptotically to

z0;
2djz

pqcjyumu
5

w2

umu
. ~15!

In particularz0→` as m→0, supporting the numerical ob
servation that«(z0) is strictly monotonously decaying fo
m50.

It is easily verified that the analytic argument forz0→`
as m→0 is, as far as physically interesting, robust agai
additions of higher order corrections of the formg(w2)A to
the right-hand side of Eq.~3! or the replacement of the term
jz

2]z
2A by some more precise formh(w2)]z

2A @assuming that
h(w2) has no zeros for realw, i.e., the partial differential
equation is nonsingular#. All other higher order corrections
to Eq. ~3! involve higher order derivatives~and additional
boundary conditions!. If these corrections are small they ar
in a first approximation, active only in a thin boundary lay
and lead, effectively, to modified boundary conditions of t
form of Eq. ~10!. Thus, taking the validity of the uppe
boundary condition~9! for granted, a modified lower bound
ary condition is always involved in a localization near t
lower boundary.

To better understand the situation form5” 0, a numerical
solution of the problem is required. Figure 1 shows nume
cal results for the values of« and z0 at threshold@i.e., the
minimum of «(z0)# for finite m. Although in the limit m
→0 numerics break down, the asymptomatic results are
produced for smallm. The calculations also show that fo
m.0 the minima of«(z0) lie below the bulk (z0→`) value
«c as expected, but form,0 are, on the starred branch~see
Fig. 1!, above«c . A look at the function«(z0) ~Fig. 2!
shows that for negativem the minima on the starred branc
belong to the branch of«(z0) which approaches 3«c as z0
→`. It also becomes clear that the existence of the mini
of «(z0) for m,0 is closely related to the existence of th
thin boundary mode corresponding to eigenvalue~14!: The
minima result from the avoided crossings of the spectrum
the modes localized nearz50, which have decreasing eigen
values for increasingz0, and the eigenvalue of the thi
boundary mode, which increases withz0. If the thin bound-
ary mode is an unphysical artifact of the boundary con
tions, the minima in the function«(z0) are also unphysical
This point can be demonstrated by using the original bou
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4686 PRE 62A. G. ROSSBERG
ary condition@Eq. ~8!# as the lower boundary condition an
adding, to model the mixed boundary condition~10!, a term
b(z1z0)]zA to the l.h.s. of Eq.~3!, where b(z) is, e.g.,
given by

b~z!5H 13.2«cwm if z,2.83w

0 otherwise.
~16!

With these modifications the thin boundary mode—a
therefore the avoided crossings and the minima
«(z0)—are suppressed form,0, but otherwise the spectr
change only little~see Fig. 2!.

Can higher order corrections to the boundary conditio
that arise from the asymptotic expansionin the framework of
the SMexplain the preference of large obliqueness angl
From the figure in Ref.@17# displaying the hydrodynamic
boundary layer of dielectric electroconvection, a valuem'
20.4qc

21 can be obtained. The sign follows directly from th
fact that convection is suppressed by the no-slip bound
conditions for the hydrodynamic velocity field, the order
magnitude follows from the geometry of the flow. By th
sign ofm a preference of large obliqueness angles~boundary
instability! is excluded. Even if the sign would change b
the magnitude remain the same, Eq.~15! would give an un-
physical valuez0.d.

IV. NONLINEAR SELECTION

In principle a nonlinear selection of large obliquene
angles is also conceivable. At threshold, two kinds of n
linear mechanisms are active@17#. The first is the direct,

FIG. 1. ~a! The threshold value of dielectric electroconvecti
~relative to the bulk threshold in an untwisted nematic! in units of
«c @Eq. ~5!# and ~b! z0 ~approximately equal to the distance of th
maximum of the critical mode from the boundary! in units of the
width w of the critical mode@Eq. ~7!#, both as functions of the
parameterm in boundary condition~10!. Stars and crosses are n
merical solutions. The crosses correspond to a thin boundary m
The dashed lines are the analytical approximations for smallumu,
Eq. ~15! for ~b!.
d
f

s

?

ry

t

s
-

local, nonlinear saturation of the pattern amplitude,
strength of which is measured by the coefficientg in Ref.
@17#. This mechanism inhibits the coexistence of line
modes of the form of Eq.~6! if the overlap of the two modes
along z is too large. Correspondingly, the wave vectors
coexisting linear modes can be expected to enclose s
finite minimum angle. This could, for not too small a valu
of w/d, lead to the preference of certain wave-vector com
nations which fill the allowed range of'645° particularly
well, but it does not imply that large obliqueness angles
generally preferred.

The second nonlinear mechanism acts indirectlyvia the
electric potential. At positions in the sample whereuAu2 is
large, additional charge transport processes are active, w
effectively increase (SE in Ref. @17# is positive! the electrical
conductivity. Consequently, the strength of the electric dr
ing field is reduced whereuAu2 is large and increased wher
uAu2 is small, under the constraint that the total voltage dr
is constant. But this effect is typically weak compared
direct nonlinear suppression, and presumably does
change the qualitative properties of the planform select
problem.

V. CONCLUSION

It was shown that a twist of the nematic director—or a
other anisotropy axis in a different system—leads to a loc
ization of the pattern in planes parallel to the director. Wh
the twist is not too strong, the localized linear modes can
calculated in the framework of the amplitude formalism.

e.

FIG. 2. The lowest eigenvalues«(z0) for ~a! m520.5w, ~b!
m50, and~c! m52.0w. The solid lines correspond to the eige
value problem@Eqs. ~3!, ~8!, and ~9!#, and the dotted lines to a
modified model that does not contain the boundary mode leadin
the large negative eigenvalues«(z0) for negativem. For m50,
solid and dotted lines are identical.
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electroconvection, apart from being the twist axis, thez axis
in Eq. ~1! plays another special role—the external elect
field is parallel toẑ. But little would change if this additiona
anisotropy was missing~e.g., for reaction-diffusion pattern
in uniaxially anisotropic media!. Only jy andjz would then
be equal by symmetry.

For dielectric EC in twisted nematic cells the localizati
width w5O(d/qc)

1/2 is given by Eq.~7!. When the material
parameters of the liquid crystal are known,w can be calcu-
lated using the analytic approximations for the cohere
lengths and the wave number from Ref.@17#. As a result of
the localization, the critical wave vector is degenerate o
circular arc. The angle enclosed by the arc might be
creased beyond 90° by using supertwist nematic cells.
then obtains a pattern-forming system with a geometry v
similar to a two-dimensional isotropic system, but with
different topology~no invariance of the pattern under 180
rotation! and very particular nonlinear interactions.

The observation of normal rolls in thin cells and at lo
frequencies~large wavelength! by Bohatsch and Stannariu
@20# is compatible with—and presumably predictable from
the standard model. The transition to a state with a ‘‘bro
smeared out, and fluctuating’’ distribution of wave-vect
orientations at higher frequencies can be understood from
wave-vector degeneracy. The theory also reproduces
observation that the transition takes place at some mor
less fixed ratiol/d. This corresponds to some fixed rat
w/d at which boundary condition~4! becomes appropriat
and degeneracy sets in. Assuming that the observations a
higher frequencies, where the wave vectors were better
fined and aligned with the director anchoring, did not suf
re

ys
e

a
-

ne
y

,
r
he
eir
or

yet
e-
r

from the technical difficulties described in the beginning
Sec. III, they seem to exhibit effects not described by
standard model. These effects seem to lead effectively
modified boundary conditions of the form of Eq.~10!, with
m.0. Nevertheless this does not imply that, just as in
twisted cell, there are boundary modes also in the untwis
cell. Solution of the linear problem for the untwisted ce
with boundary condition~10!, m.0, and a corresponding
upper boundary condition yields a critical mode covering
whole cell. Since the theory can explain the transition at
lower end of the intermediate-frequency range with fluctu
ing wave vector but does not imply that there is anoth
transition at an upper bound, it may also be useful to inv
tigate the two transitions independently in experiments. T
intermediate-frequency range is probably an independen
gime, and not just as the crossover between the lo
frequency and the high-frequency range.

Conclusive information on the 3D structure of the hig
frequency mode in untwisted cells might be obtained by
vestigating spectrally resolved shadow graphs or light s
tering.
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