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Twist localizes three-dimensional patterns

A. G. RossberY
Department of Physics, Kyoto University, 606-8502 Kyoto, Japan
(Received 9 April 200D

A mechanism for the localization of spatially periodic, self-organized patterns in anisotropic media which
requires systems extended in all three spatial dimensions is presented: When the anisotropy axis is twisted, the
pattern becomes localized in planes parallel to the anisotropy axis. An analytical description of the effect is
developed, and used to interpret recent experiments in the high-frequency regime of electroconvection by
Bohatsch and Stannari{iBhys. Rev. B60, 5591(1999]. The localization width is found to be of the order of
magnitude of the geometrical average of the pattern wavelength and the inverse twist.

PACS numbes): 45.70.Qj, 47.54tr, 83.70.Jr, 44.27%g

I. INTRODUCTION tails, see the references belpwrhich is based on the Leslie-
Ericksen formulation of nematodynamics. The SM predicts
Three-dimensional pattern formation in dissipative sys-bulk convection. It has, on the linear level, been worked out
tems has been theoretically investigated to some extent fdsy Dubois-Violetteet al. [11]. Later it was modified for
the case of the complex Ginzburg-Landau equafion6l—  square-wave driving voltagg42], and to include flexoelec-
but there seems to be no experimental model for which theric effects[13—15 and the effects of finite cell thickness
theory is quantitatively valid. Qualitatively, many results [16]. Recently it was extended to the nonlinear lej&T].
should also apply to a similar case, pattern formation inBut attempts to bring the predictions of the Skreshold
three'dimensiondBD) excitable media, for which controlled V0|tage and Critica| wave numbe'rnto quantitative agree_
experimental realizations exigsee, e.g., Refd7-9)), al-  ment with experiments were only partly successful.
though the containers are typically rather small. In both sys- The main challenge to the SM is the “isotropic” mecha-

tems it seems reasonable to concentrate on the structure aﬁgm for EC[18,19, for which the anisotropy of the nematic
dynamics of filaments formed by the cores of scroll waves;g only of secondary relevance. There, EC is driven by in-

which largely control the dynamics in the remaining spaceyqrieq charge gradients in thin Debye layers near the elec-
In a recent theoretical work, for example, the filament dy'trodes, which are not included in the SM. The isotropic

namics was investigated for an anisotropic excitable mediu%echanism naturally leads to boundary convection. Since

\éwth a t\;]wsted anls?trolpy ax@LO](,j.a ngﬁtlonthij_?d in the .several material parameters relevant to the isotropic mecha-
uman eart muscle. tyvas pre icte t at the |gment YPhism are unknown, only semiquantitative predictions of the
cally drifts such as to align with the anisotropy axis.

. ) . effect can be made.

Both the complex Ginzburg-Landau equation and excit- | yinciple, both mechanisms are active, but it is reason-
e_lble "T‘ed'.a exh|t_)|t trave!mg wavgs._For systems formitey . able to assume that one of them dominates. In a recent effort
tionarily bifurcating spatially periodic structures, the domi- o settle the controversy on bulk vs boundary instability, Bo-

; hatsch and Stannariyi20] developed an experiment with a
so strong, and different effects can be expected. A prototypg, ,jiied design, which was intended to map the structure
for such a system might be the high-frequency regime o cross the cell (;nto the 2D shadowgraph imégethe dif-
electroconvectioEC) in nematic liquid crystals. Convec- fraction patterh of light passing through the cell.

tion patterns with a wavelength which is small compared The technique of Bohatsch and Stannarius was to use
to the spatial extensions of the sample are easily obtainegammes with awistedgeometry: just as in twisted nematic

and sustained over long times by applying a sufficiently hig . . LA,
ac voltage(with a modulation frequency higher than thehl‘CD displays, the anchoring of the nematic director(n

“cutoff frequency” approximately equal to the inverse — 1)Aat the upper and lower electrodasgparatiord) is such
charge relaxation timeat plane, paralleland transparept thatn is parallel to the layer, but the alignment axis of the
electrodes enclosing the liquid crystal. However, there is stildirector at the upper boundary is perpendicular to that at the
some discussion about whether the patterns are really thré@wer boundary. In the equilibrium configuration the director
dimensional, i.e., arising from a bulk instability and forming iS planarly oriented, and interpolates between the boundaries
a laminar structure, or rather parallel rolls located at the elecwith a uniform twistnXrot n. Configurations with positive
trodes. or negative twists are thinkable. They are related to each
Closely related to this geometrical question is the questiomther by a reflection. Without loss of generality, a negative
about the mechanism of convection. The most popular explawist (— 7/2d) shall be assumed. Although inversion sym-
nation, here called the standard mo¢&M), is by the dielec- metry is broken in the twisted geometry, there is still the
tric regime of EC via the Carr-Helfrich mechanidifior de-  symmetry with respect to a 180° rotation of the cell around
the axis of the director at midplane. The critical mode at the
onset of EC, which breaks the approximate translation sym-
*URL: http://www.rossberg.net/ag metry, can be symmetric with respect to this rotatiper-
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haps followed by a translation by half a wavelengteading Here thez axis is perpendicular to the electrodes. To be
to normal rolls or also break this discrete symmetry, thengpecific, assume thatpoints “up” and — z points “down.”
leading tooblique rolls For now, the orientation of andy axes relative to the direc-
In experiments with untwisted cells, the rolsr laminag  tor anchoring shall be left unspecified. This is possible be-
observed at the threshold of structure formation in the high'cause of the rotational Symmetry under|ying Em) [21]
frequency regime are always normi&lThus Bohatsch and _The angle between and thex-z plane is denoted by. The

Stannarius concluded by an intuitive argument, that, 'nquantitative validity of Eq(1) requires thatp be small, and

twisted cells, the observation of normal rolls at thresholdthat modulations oA and ¢ in space and time are slow. In

demonstrates a bulk instability, while the observation of ob- articular Eq(1) is never valid across the whole cell, singe
lique rolls is an indicator of a boundary instability, in par- b 4 '

) . . varies over an angl®(1), a problem that will be discussed
ticular when the rolls are approximately normal to the ahgn-b -
- i . elow. The(positive coherence lengthg,, &,, and§, are
ment ofn at the boundaries. They observed a transition fro”lypically of the orderO(q, ), and r is of the order of the
. . (o] 1
normal to oblique rolls as the ac frequency increases. charge relaxation time. The strength of the external stress is

Assuming that the SM is basically correct, Secs. Il and I”expressed by the reduced control paramete£2/E2— 1 in

of this paper develop the linear theory for the ConveCtk.mterms of the strength of the external electric ac fi&ld

pf::gg llcgrt\/f\/rls;t‘re]dotr:erl]lgérprtid;ﬁgnglg(r;tt:(c:)zler:o:ieess fcctiyezled ('jn_=V/d and the threshold field for electroconvectig&y for
P  Tesp Y: ®She thick d— =), untwistedcell. |¢| is assumed to be small.

ﬁﬁﬂﬁ&%ﬁgggg?ﬁ% c\i/zrnyt Z?Tﬁ'etl?hnrse'sﬁgﬁlg?ggn?/l;itggﬁsatg Observe that this definition ef differs from the one used in
' ef.[20], which is based on the threshold in ttveistedcell

Sec. V concludes with an interpretation of the experimentsin .~ "~ . .
light of the theory. with finite d, a quantity to be calculated belgwAnalytic

approximations for all quantities involved in descriptii)
can be found in Refl17].

Il. LOCALIZED BULK MODES IN The boundary condition corresponding to Ef). is

THE STANDARD MODEL

Below, the linear theory of high-frequency EC in twisted . .
cells is developed within the framework of the SM. The as- A(x,y,2,y,t)=0  atthe horizontal boundaries. (2)
sociation of the obliqueness angle with the position of the
convective mode turns out to be correct. But it is also found . i , ,
that the experimental results for twisted cells cannot be trans- F70M the translation invariance in they plane, it follows
fered to the untwisted cell, as suggested by Bohatsch anffat the critical mode is of the form=a(z)exp(Qx+iPy)
Stannarius, because the localization of the linear mode, ne#ith real Q and P, i.e., with a pattern wave vectar=(q.
the boundaries or in the bulk, is enforced by the twist itself.+ Q,P). We will choosethe orientation of thex axis to be

The calculations are based on the general weakly nonlinparallel toﬁ, in other wordsP=0. It is easily seen by sepa-
ear theory[17] of dielectric EC in large containers, which ration of variables that according to Ed) the critical mode,
has to take the interaction of the convection pattern with.e., the first mode to become unstable saincreases, has
several homogeneous soft modagdrodynamic modgsex-  Q=0. It follows that the twist has no influence on the wave-
plicitly into account. One of these modes is the director ori-length of the critical mode.
entation. As follows from the general calculation, at lowest This result is in agreement with the measurements of Bo-
order, a twist does not excite the other soft modes of thénatsch and Stannarius for cells of intermediate thickness. But
liquid crystal, such as electric potentials or fluid motion, in their thinnest and thickest cells they found shorter wave-
even when the electric ac voltage is applied. The direct infengths. While the deviation in the thin cell can be under-
fluence of the twist on the convection pattern reduces to 8tood as a breakdown of the 3D amplitude formalism due to
purely geometric effedino additional coupling constants not |arge spatial gradients @ and ¢, the reason for the devia-
relevant for the untwisted cell are involvedhe local am-  tjon in the thick cell is not clear. In agreement with theoret-
plitude and phase of the convection pattern is expressed byigal expectations the wavelength decreases with increasing
complex fieldA=A(X,y,z,t), such that the modulation of frequency. The observed deviation from the approximate
actual physical quantitiesu is given by u(x,y,zt)  ~» Y2 Jaw at the highest frequencies indicates that the
=UpA(x,y,z,t)explgx)+c.c+(higher order corrections wavelength has reached the Debye length and charge diffu-
whereq, is the wave number of the convection pattern atsion effects need to be taken into account in the theoretical
threshold in the untwisted cell, ang} is a complex constant. description, an effect noticed already by Dubois-Violette
The linear dynamics oA in the presence of a pure, not too et al. [11] (and typically to be expected at the 10°-fold

strong twist of the nematic director is descriddd] by cutoff frequency[17]).
_ 2.2, .2 . 2, 2.2 Choose the origin of the axis such thatp=0 atz=0.
TOA= e+ &+ E(dy—10ce) "+ £79; A 1) Denote byz, the distance of the lower boundary from

=0 (i.e., the lower boundary is &= —z;). By the preced-
ing construction, the amplitude of the critical mode is a func-
when chevron patterns are observed, one is not at the threshofPn Of z alone and satisfies
of structure formation.

2In the low-frequency regime of EC they can be normal or ob- 2 2 2. 2.2
lique, however. O0=[e— & ace”+ £;971A, (3
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with ¢=mz/2d. The equation has the form of the time- cell. The orientation of the critical wave vectgrand the
independent Schainger equation for the quantum harmonic position of the maximum of the critical mode within the

oscillator. - - }
Ignore, for a moment, the horizontal boundaries, and im_sample are coupled,_such_tfmis paralle_l_ton at the max:—
pose instead the boundary condition mum of A(z). The orientation of the critical wave vectqr
lies between the two orientations of director anchoring at the
A is bounded as |z|—¢. (4 boundaries. Small angles of ordex(w/d) betweenq and

director anchoring are forbidden, but otherwise the orienta-

tion ofﬁ with respect to the symmetry axis, i.e., the oblique-
mqcé ¢, ness angle, is undetermined. One is thus dealing with a
E= 85y (5 highly degenerate problemwith critical wave vectors lying
on a circular arc, similar to pattern formation in isotropic
with a critical mode systems, where the critical wave vectors lie on a circle.
In thin cells, where w/d,dq.=0(1), the three-
z? dimensional amplitude equatiofl) is not an accurate de-
A=ex;{ - E) (6) scription anymore. But when solved numerically with
boundary condition(2) as a qualitative model, it predicts
with a width normal rolls in agreement with experiments.
The theoretical analysis for thick cells seems to corre-
2d¢, 12 spond well with the observations of Bohatsch and Stannarius
=(7Tq I3 ) % in the “broad” intermediate frequency rang@vithin the
e high-frequency regime where, near onset, the distribution

harmonic oscillator. fluctuating” [20]. Unfortunately, no experimental raw data

Now assumelg.> 1, which is required for the validity of for'this range have ygt been puin;hed, which mqke; it'hard
Eq. (1). Thene,=0(dq,) <1 and, within the rangéz| to Judge_ how well defined the maxima of these dls_tr!butlons
=O(w) covered by the critical mode,e=0(w/d) are, which theydo nevertheless f!nd at snja]l but finite ob-
—0(dq,) ~Y2<1. Thus, forlz| = O(w), solutions(5) and(6) liqueness angles~10°), and which are difficult to under-
comprise a physically valid solution of E€l). For |z/>w  Stand from the theory presented here.
the critical mode is to high accuracy zero, and thus a solution
of the linear problem—also beyond the range of validity of
Eqg. (1). Of course any homogeneous boundary condition, in lIl. BOUNDARY MODES WITH
particular Eq.(2), is satisfied, provided the boundaries are MODIFIED BOUNDARY CONDITIONS
sufficiently far away. Equation&) and (6) therefore give a
physically valid threshold and critical mode.

Then the lowest eigenvalue of E@) is

The experimental observation that, for frequencies above
Next. consider the situation that one of two boundariesthe intermediate “transition range,” the distribgtion of_ the
h, lower one, is near=0 [i.e., zg=O(w)], the other wave vectors near onset beco_mes narrower with maxima at
eg., the ’ h he | . 8 d ' dition b obliqueness angles near45°, i.e., parallel to the surface
houndary far away. Then the lower haundary condition e'anchoring, seems to be in contradiction with the theory based
comes on the SM. A simple explanation for this, which should be
®) examined experimentally before coming to a final conclu-
sion, would be the combination of two effects. The first ef-
while the upper boundary condition effectively remains ~ fect is that, at higher frequencies, where the pattern wave-
lengths are shorter and wave-optical effects have to be taken
A isbounded as z— . (9) into account, the optical contrast of the shadowgraph method
and the intensity of the reflexes in the optical far field be-
This eigenvalue problem has to be solved numeric@fier come weaker. As a result, the apparent optical threshold of
rescaling, it depends only on the parametgks. andz,/w); convection could lie slightly above the actual threshold.
here a shooting method is used. The lowest eigenva(zg Wave-optical effects become important at a pattern wave-
as a function ok, is shown in Fig. 2o) (lower curvg. Asz,  length\ of the order of magnitude of the geometrical aver-
decreases to zero and the maximum of the critical mode amge of the optical wavelength and the thickness of the con-
proaches the boundary, the Gaussian shap@(af is de-  vective layerO(w)=0(\d)*?[22], a condition satisfied in
formed, and the thresholg(z,) increases monotonically. In the present case. The second effect is that the value of the
particular, one finds(0)=3¢,, the eigenvalue of the first reduced control parameter corresponding to the onset of non-
excitation and lowest antisymmetric mode of the “harmonictrivial, nonlinear behavior involving homogeneous soft
oscillator,” with the corresponding eigenmode. Excitationsmodes scales liken(d)? or even §/d)* [17], and thus de-
near the boundaries have higher thresholds than in the bullreases with increasing frequency. In combination of these
and are inhibited. two trends, the observed large obliqueness angles near
Thus the theory predicts that in thick enough cells thethreshold in thick cells at high frequencies might, in fact,
critical mode is localized within a horizontal layer which correspond to already fully developed nonlinear effects, such
covers only a small fractioD(w/d)=0(q.d) ¥? of the as the chevron pattern. In particular the obliqueness angles

A=0 at z=-z
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above 45°(Ref.[20], Fig. 11, 3500 Hxwould then be easier For nonzerou the common factof can be canceled since
to understand. f#0 by Eq.(11). A simple algebraic relation betweenand

But one could also try to explain the observation of pre-z, (which determines the wave vectdor the critical mode
ferred obliqueness angles neard5° as a result of some is thus obtained.
mechanism of wave-vector selection that removes the degen- As u—0, two cases can be distinguished. In the first case
eracy of the problem. Mostly linear selection mechanisms, remains bounded. Then E@.3) reduces asymptotically to
via perturbations from the boundaries shall be considered
here. Nonlinear mechanisms will shortly be discussed in Sec. e~— gi/uz. (14
V.

If there is a linear selection mechanism for large oblique-Corresponding solutions exist only far<0. They can be
ness angles at threshold, at least one of the three conditio@®proximated byf(e,z)~exp@w), and are strongly local-
(3), (8), and(9) must be invalid. The reason for this may be ized near the lower boundary. But due to the large values of
found in the truncation errors of the asymptotic expansiore| (@s u—0), these solutions can not be expected to be
which leads to Eqs(3), (8), and(9), the excluded effect of always physically meaningful. In the second cagein-
noise, or an insufficient description on the hydrodynamiccreases over all bounds. Then small deviations from eigen-
level. All possible truncation errors become, in one way orvalue(5) and solution(6) are sufficient to satisfy the bound-
another, large only fozg=0(d). This will be demonstrated ary conditions. Thuse remains bounded, and Eq13)
for one case below. If noise is the main cause for seleajng reduces asymptotically to
(which is presumably the case at intermediate frequehndtes
is reasonable to assunzg to be randomly distributed over 2d¢g; w?

X : X g~ ——— =7 (15
[0,d], leading again t@,=0O(d) on average. Thus it can be O mac& | ul
concluded that, in fact, the description on the hydrodynamic
level, in particular near the boundaries, is insufficient. In particularzy— o as u—0, supporting the numerical ob-

For the eigenvalue problem considered above, boundargervation thats(z) is strictly monotonously decaying for
condition(8) turns out to be a somewhat singular case of theu=0.

more general condition It is easily verified that the analytic argument fy— «
as u—0 is, as far as physically interesting, robust against
A=pd,A at z=-z, (10) additions of higher order corrections of the fogtip?)A to

the right-hand side of Eq3) or the replacement of the term
£292A by some more precise forin(¢?) 92A [assuming that
h(¢?) has no zeros for reap, i.e., the partial differential

with a real parametej. To discuss the implications of
téquatlon is nonsinguléarAll other higher order corrections

value problem(3) with boundary conditiong9) and (10)
shall now be investigated. This will also yield an analytic
argument, robust with respect to perturbations, that suppor
the numerical observation that far=0 the functione(z;) is
monotonously decaying withy.

Up to normalization, there is, for fixed, a single non-
trivial solution A(z) =f(e,z) of Eq. (3) satisfying the upper
boundary conditio9). The lower boundary conditiofiL0)
determines a discrete set nf for given ¢ or, respectively,
e=¢(zp) is determined implicitly by the lower boundary
condition as a multivalued function af, i.e., by

boundary conditions If these corrections are small they are,
in a first approximation, active only in a thin boundary layer
Bnd lead, effectively, to modified boundary conditions of the
form of Eq. (10). Thus, taking the validity of the upper
boundary conditior{9) for granted, a modified lower bound-
ary condition is always involved in a localization near the
lower boundary.

To better understand the situation fer#0, a numerical
solution of the problem is required. Figure 1 shows numeri-
cal results for the values of andz, at thresholdi.e., the
minimum of e(zy)] for finite w. Although in the limit u
—0 numerics break down, the asymptomatic results are re-

f(e(z), —20)= pt' (e(20),— 20), (1) produced for small. The calculations also show that for
©>0 the minima ofe(zp) lie below the bulk ¢y— ) value
where the prime ofidenotes a differentiation with respect to ¢ s expected, but fou <0 are, on the starred brancsee
the second argument. Fig. 1), abovee.. A look at the functione(zy) (Fig. 2
At a local minimum ofe(zy) one hasd, £(z,)=0, and  Shows that for negative the minima on the starred branch
0 belong to the branch of(zy) which approaches s asz,
—, It also becomes clear that the existence of the minima
) , of £(zy) for ©<0 is closely related to the existence of the
f'(e(zp), = 20)= nf"(e(20), — 29). (12} thin boundary mode corresponding to eigenvallid): The
minima result from the avoided crossings of the spectrum of
By combining Eqs(11) and (12) and the defining equation the modes localized near= 0, which have decreasing eigen-
of f [Eq. (3)], one arrives at values for increasing,, and the eigenvalue of the thin
boundary mode, which increases with If the thin bound-
ary mode is an unphysical artifact of the boundary condi-
(13 tions, the minima in the function(z,) are also unphysical.
This point can be demonstrated by using the original bound-

differentiation of Eq.(11) with respect taz, yields

gf=pu?

T2E20222 ] f

4d?
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FIG. 1. (@) The threshold value of dielectric electroconvection | 7™
(relative to the bulk threshold in an untwisted nempaticunits of 0, ] > 3 4
e. [Eq. (5)] and (b) z, (approximately equal to the distance of the z,/w

maximum of the critical mode from the boundaiy units of the
width w of the critical mode[Eq. (7)], both as functions of the FIG. 2. The lowest eigenvalues(zy) for (a) uw=—0.5w, (b)
parameteru in boundary conditior(10). Stars and crosses are nu- ;,=0, and(c) w=2.0w. The solid lines correspond to the eigen-
merical solutions. The crosses correspond to a thin boundary mod@alue problem[Egs. (3), (8), and (9)], and the dotted lines to a
The dashed lines are the analytical approximations for sfpdll  modified model that does not contain the boundary mode leading to
Eq. (15) for (b). the large negative eigenvaluegz,) for negativeu. For u=0,
solid and dotted lines are identical.
ary condition[Eq. (8)] as the lower boundary condition and
adding, to model the mixed boundary conditid®), a term  |ocal, nonlinear saturation of the pattern amplitude, the
b(z+20)d,A to the Lh.s. of Eq.(3), whereb(2) is, e.g., strength of which is measured by the coefficignin Ref.
given by [17]. This mechanism inhibits the coexistence of linear
) modes of the form of Eq6) if the overlap of the two modes
182w if z<2.83w 5 along z is too large. Correspondingly, the wave vectors of
0 otherwise. (16) coexisting linear modes can be expected to enclose some
finite minimum angle. This could, for not too small a value

With these modifications the thin boundary mode—andof w/d, lead to the preference of certain wave-vector combi-
therefore the avoided crossings and the minima ofhations which fill the allowed range et +45° particularly
e(zg)—are suppressed fqu<<0, but otherwise the spectra well, but it does not imply that large obliqgueness angles are
change only little(see Fig. 2 generally preferred.

Can higher order corrections to the boundary conditions The second nonlinear mechanism acts indireutyy the
that arise from the asymptotic expansiarthe framework of ~ electric potential. At positions in the sample whefd? is
the SMexplain the preference of large obliqueness anglesfarge, additional charge transport processes are active, which
From the figure in Ref[17] displaying the hydrodynamic effectively increase$g in Ref.[17] is positive the electrical
boundary layer of dielectric electroconvection, a vajue conductivity. Consequently, the strength of the electric driv-
—0.49. ! can be obtained. The sign follows directly from the ing field is reduced wherfA|? is large and increased where
fact that convection is suppressed by the no-slip boundarpA|? is small, under the constraint that the total voltage drop
conditions for the hydrodynamic velocity field, the order of is constant. But this effect is typically weak compared to
magnitude follows from the geometry of the flow. By the direct nonlinear suppression, and presumably does not
sign of u a preference of large obliqueness anglesundary  change the qualitative properties of the planform selection
instability) is excluded. Even if the sign would change but problem.
the magnitude remain the same, Ef5) would give an un-

physical valuezy>d. V. CONCLUSION

b(z)=

IV. NONLINEAR SELECTION It was shown thqt a twist of the nematic director—or an-

other anisotropy axis in a different system—Ieads to a local-

In principle a nonlinear selection of large obliquenessization of the pattern in planes parallel to the director. When
angles is also conceivable. At threshold, two kinds of nonthe twist is not too strong, the localized linear modes can be
linear mechanisms are actiy@7]. The first is the direct, calculated in the framework of the amplitude formalism. In
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electroconvection, apart from being the twist axis, zrexis  from the technical difficulties described in the beginning of
in Eq. (1) plays another special role—the external electricSec. Ill, they seem to exhibit effects not described by the
field is parallel toz. But little would change if this additional standard model. These effects seem to lead effectively to
anisotropy was missin¢e.g., for reaction-diffusion patterns modified boundary conditions of the form of EQ.0), with
in uniaxially anisotropic medjaOnly £, and &, would then  «>0. Nevertheless this does not imply that, just as in the
be equal by symmetry. twisted cell, there are boundary modes also in the untwisted
For dielectric EC in twisted nematic cells the localization cell. Solution of the linear problem for the untwisted cell
width w=0(d/q.)"?is given by Eq.7). When the material with boundary condition(10), x>0, and a corresponding
parameters of the liquid crystal are knowncan be calcu-  upper boundary condition yields a critical mode covering the
lated using the analytic approximations for the coherencgyhole cell. Since the theory can explain the transition at the
lengths and the wave number from REE7]. As a result of  |ower end of the intermediate-frequency range with fluctuat-
the localization, the critical wave vector is degenerate On &ng wave vector but does not imply that there is another
circular arc. The angle enclosed by the arc might be inygnsition at an upper bound, it may also be useful to inves-
creased beyond 90° by using supertwist nematic cells. Onggate the two transitions independently in experiments. The
then obtains a pattern-forming system with a geometry veryntermediate-frequency range is probably an independent re-
similar to a two-dimensional isotropic system, but with 8gime, and not just as the crossover between the low-
different topology(no invariance of the pattern under 180° frequency and the high-frequency range.
rotation) and very particular nonlinear interactions. Conclusive information on the 3D structure of the high-
The observation of normal rolls in thin cells and at low frequency mode in untwisted cells might be obtained by in-

frequencieglarge wavelengthby Bohatsch and Stannarius yestigating spectrally resolved shadow graphs or light scat-
[20] is compatible with—and presumably predictable from—tering.

the standard model. The transition to a state with a “broad,

smeared out, and fluctuating” distribution of wave-vector
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